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A complete outline is given for how to determine the critical properties of 
polymer mixtures with extrapolation methods similar to the Ferrenberg- 
Swendsen techniques recently devised for spin systems. By measuring not only 
averages but the whole distribution of the quantities of interest, it is possible to 
extrapolate the data obtained in only a few simulations near T,. over the entire 
critical region, thereby saving at least 90% of the computer time normally 
needed to locate susceptibility peaks or cumulant intersections and still getting 
more precise results. A complete picture of the critical properties of polymer 
mixtures in the thermodynamic limit is then obtained with finite-size scaling 
functions. Since the amount of information extracted from a simulation in this 
way is drastically increased as compared to conventional methods, the investiga- 
tion of mixtures with long chains or built-in asymmetries is now possible. As an 
example, the critical points, exponents, and amplitudes of dense, symmetric 
polymer mixtures with chain lengths ranging from N= 16 up to N =  256 are 
determined within the framework of the 3D bond fluctuation model using 
grand canonical simulation techniques. As an example for an asymmetry, the 
generalization of the method to asymmetric monomer potentials is briefly 
discussed. 

KEY WORDS: Polymer mixture; histogram method; finite-size scaling; phase 
transition; Monte Carlo. 

1. I N T R O D U C T I O N  

P o l y m e r  mel ts  a n d  b lends  have  been  the  subject  of in tens ive  scientific 
i nves t i ga t i on  over  m a n y  years.  A l t h o u g h  po lymer s  of different  chemica l  

n a t u r e  are genera l ly  very  i n c o m p a t i b l e  due  to the very little e n t r o p y  ga in  
of such mix tu res  (1) as o p p o s e d  to the e n t r o p y  ga in  in  mix tu res  of  smal l  

molecules ,  there  is a large prac t ica l  in teres t  in  mix ing  p o l y m e r s  wi th  
different  p roper t i e s  to get n ew  mate r i a l s  wi th  somet imes  exci t ing features,  
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and in material sciences and industry, polymer blends are a field of major 
interest. Various experimental methods are available and have been used 
extensively to measure the entropies and enthalpies of mixing, (2) the effec- 
tive interaction parameters, (3,4) and the phase diagrams, i.e., the coexistence 
curves for phase separation and spinodal curves (5'7) in polymer blends. 
When compared with the existing analytic theories such as the Flory- 
Huggins lattice model (1's'9) or generalizations thereof, (lw12) which are all 
mean-field theories, the experimental findings often are in blatant contrast 
to major predictions of those theories. One prominent example of these dis- 
crepancies is the Flory-Huggins interaction parameter Z. This parameter 
has been determined experimentally for many systems by fitting the 
theoretical Flory-Huggins expression for the free energy of mixing per 
particle (~) 

3F ~A ln(~A)+r kBT N--~A ~-~ ln(~bB) + ~ ln(~v) + Z~A ~B (1) 

to the experimental data on phase separation, heat of mixing, or 
extrapolated zero-angle neutron scattering, using ) as a free parameter. 
While according to the mean-field theories )~ in Eq. (1) should be a purely 
enthalpic quantity ~ T -1, independent of composition (polymer densities), 
experiments generally find that their effective Flory parameters contain 
strong composition dependences. (3'4) Another point which has been in 
particular focus recently is that the analytic theories naturally predict 
mean-field critical behavior for the (second-order) unmixing transition, 
while according to the Ginzburg criterion (~3 16) there should be non-mean- 
field (Ising) behavior very near the critical point. This non-mean-field 
critical behavior has been demonstrated nicely by recent small-angle 
neutron and dynamic light scattering experiments (17) and has also been 
seen in various Monte Carlo simulations. (18'19) Even though Monte Carlo 
methodsI2~z3~--like the analytic theories--use lattice models, their results 
are in far better qualitative agreement with the experimental findings. They 
show, for instance, strong composition dependences of the effective Flory 
parameter and non-mean-field critical behavior at the unmixing transition. 
Therefore the use of a lattice in describing polymer systems is presumably 
not a severe error and the failure of the analytic theories stems from 
various other crude approximation. (~8~ 

In the light of these aspects one might ask why there are so very few 
Monte Carlo approaches to polymer mixtures. The reason is that there are 
three very severe hindrances which have made Monte Carlo simulation of 
polymer blends practically impossible until very recently. 

(a) To see the unmixing transition occur just by the diffusive motion 
of the polymers (24-27) is impossible within any reasonable amount 
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of computer time. Even if this time were available, the lattices 
which can be simulated are for long chains by far too small to 
allow the system to form domains of different phases. 

(b) Since relaxation times near the critical point are very large and 
acceptance rates in dense systems are usually small, one has 
to wait extremely long (in units of CPU time) between two 
uncorrelated measurements of, for instance, the order parameter 
of the transition. 

(c) The physically interesting case of mixing polymer species with 
different properties, such as different stiffnesses or bond lengths, 
is almost impossible to model using convential lattice algo- 
rithms, (2~ which usually provide only one bond length 
(the lattice spacing) and two bond angles (~ and ~/2). 

While previous simulations of polymer mixtures (18'19~ could overcome 
the first difficulty by simulating in a grand canonical rather than a 
canonical ensemble, they could not get around the second and third points 
and therefore restricted their investigations to rather dilute systems with 
short chains where the two polymer species A and B were exactly equal. 
Upper critical solution temperatures in these so-called symmetric polymer 
mixtures due to a small repulsive potential between species A and B and 
parabolicly shaped density dependences of the effective Z parameter have 
been found in these simulations as well as in recent experiments. (3~ But 
many important questions had to remain unanswered due to the second 
and third difficulties, for instance, whether the observed completely Ising- 
like critical behavior over the whole scaling region is an artefact of the 
short chains or how the critical points get shifted in asymmetric mixtures. 

While by now, with the advent of new sophistaced lattice algorithms 
such as the bond fluctuation model in tWO (3~) and three (26'2s'32~ dimensions, 
point (c) is in principle no longer a real problem, there remains the 
fundamental difficulty (b). 

In this paper I present methods to overcome this difficulty. Since the 
problem of long relaxation times for long chains, especially near a critical 
point, is of fundamental and general (model-independent) nature, 
(marginal) improvement of the algorithms seems not to be the most 
promising strategy. A different, complementary approach is to increase the 
amount of information extracted from a simulation run. Conventionally 
averages of certain quantities relevant for the phase transition, such as 
order parameter, susceptibility, specific heat, etc., are measured. But this is 
by far not all the information generated by the simulation! Much more 
information can be achieved by storing the complete distributions instead 
of just the averages (first few moments) of the quantities in question. The 
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drastically larger amount of information contained in these distributions 
( h i s t o g r a m s )  can then be used to calculate the behavior of the system over 
a whole range of the relevant parameters (temperature and chemical poten- 
tial, say). The idea of storing whole distributions has a long history (33'34~ 
and has recently been revived by Ferrenberg and Swendsen (3s) for spin 
systems. Here I introduce this method for polymers and in addition present 
some new methods to analyze the data in the framework of finite-size 
scaling to obtain the complete critical behavior of polymer mixtures 
including critical exponents and amplitudes. The systems used to demon- 
strate the above ideas are symmetric polymer mixtures in three dimensions 
simulated with the already mentioned bond fluctuation model. (26) 
Asymmetry can easily be implemented in the model by introducing 
different potentials for the bond angles, bond lengths, or monomer- 
monomer interactions of the two species and is indeed under current 
investigation. (36~ The methods apply with only slight generalizations, which 
are described briefly in Section 3, directly to the asymmetric case, too. 

The remainder of this paper is organized as follows. In Section 2, I 
present the grand canonical method, necessary to overcome difficulty (a), 
for our model and derive the partition function for the simulated ensemble. 
In Section 3 the histogram extrapolation techniques for polymers are 
introduced and compared with conventional Monte Carlo data. In 
Section 4, I present useful functions following from finite-size scaling 
considerations by which one can determine all critical properties of the 
mixtures with reasonable accuracy even for long chains. Section 5 contains 
some concluding remarks and an outlook for future studies. 

2. G R A N D  C A N O N I C A L  S I M U L A T I O N S  

The simulated systems live on 3D simple cubic lattices with size L 3 
ranging from L = 2 4  up to 112 to take finite-size effects into account 
properly. These lattices are filled with chains of two species called A and B 
at a volume fraction ~b = 0.5 corresponding to real systems with density 
~0.8, (25) i.e., dense melts. The simulated chain lengths N A and NB of the 
A and B chains range from 16 to 256. For the symmetric case considered 
here one always has N A = N B -  N.  In the three-dimensional bond fluctua- 
tion model (26'32) each effective monomer occupies one unit cell of the lattice 
(eight lattice sites) and the bonds between the monomers of one polymer 

may have all possible lengths from 2 to xfli-0 omitting the length ,,//-8. With 
this set of allowed bonds the self-avoiding condition (no two monomer 
corners may sit on the same site) automatically ensures that bonds cannot 
intersect in the course of their motion, and thus entanglement constraints 
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are fully incorporated. I26'36) The canonical motion of the polymers consists 
of random diffusive jumps of their monomers to a nearest-neighbor lattice 
site, subject to excluded volume and the bond constraints. The effect of 
interaction potentials is taken into account by the usual Metropolis trans- 
ition rate rain(l ,  exp ( -AE/k  B T)}, where AE is the energy change induced 
by the move. It can be shown (26) that within this model five different bond 
lengths and 87 different bond angles occur in the simulation, so there are 
indeed many possibilities for modeling varying polymer properties via 
suitable potential energies. 

The monomer interaction potentials used in this study are square-well 
potentials ranging over the entire first peak of the pair correlation, (26) i.e., 

over the first three neighbor shells (54 lattice sites) up to a distance ~f6. 
The effective coordination number q of this particular system is q = 14. (26) 
The strengths of the potential are 

(2) 

resulting in spontaneous decomposition of the mixture below a critical 
temperature Tc. An appropriate and natural order parameter to quantify 
this phase transition is the difference between the numbers n A of A chains 
and ns of B chains, 

m=M/n,  with M=--nA--nB, n==-nA+ns (3) 

With ~b c denoting the critical density at the unmixing transition, the order 
parameter is related to the monomer densities ~bA, ~bs of the symmetrical 
mixtures via 

~bA = ~bc(l + m), ~bB = ~bc(1 - m), ~b~. --= (1 - ~b~)/2 (4) 

To accelerate the unmixing process a grand canonical MC step, where each 
polymer may switch its identity A ~ B, is performed after each canonical 
M C  step (attempted diffusive jump of each monomer). The question of the 
relative weights of those two processes, i.e., after how many canonical 
moves a grand canonical move may be attempted, in general is a delicate 
matter because the chains must have enough time to relax after the 
switches. This time may be very large for strong asymmetries or far below 
the unmixing transition point, but in the present case, where A and B 
chains are completely equal and we are interested in the critical region near 
the transition where also the densities ~b4 and ~b B are approximately the 
same, differences between the chaim configurations of A and B are 
negligible to a very high degree of accuracy and a relabeling step can be 
performed after each canonical MC step. (~8) Clearly, in such an ensemble 
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the order parameter M & not conserved, whereas the total number n of 
chains is conserved. Such a system is neither canonical (both n and M 
conserved) nor strictly grand canonical (both n and M not conserved) and 
strictly speaking one should put the words "grand canonical" in the title of 
this section in quotation marks. A detailed understanding of the partition 
function of such an ensemble is necessary for (a) defining an appropriate 
transition probability for the relabeling step and (b) applying the 
histogram analysis described in the next section. 

Let c denote one configuration of the system (position and identity of 
every monomer fixed). The microcanonical (n and M and internal energy 
E conserved (37)) partition function 

F(E, M )  = ~, 6(E(c)  - E) 6 (M(c)  - M )  (5) 
c 

is the number of configurations with energy E and order parameter M and 
will therefore also be called the phase space volume or density of states. To 
get from the microcanonical to the canonical ensemble one has to integrate 
with the Boltzmann measure e-~e dE with fl = 1/kB T. This yields the free 
energy F of the system: 

e -[~F-= f dEe-~EF(E, M) (6) 

This canonical partition function integrated with the measure 
exp[fiN(#AnA+#BnB)]dnAdnB yields the partition function of the true 
grand canonical ensemble where the chemical potentials per monomer 
#A, #B are conserved but neither nA nor nB is. This is a more general 
ensemble than the simulated systems are, where the total number of chains 
is held fixed. This constraint can be taken into account by including a 
factor 6(n A + n B -  n) in the grand canonical measure, leading to 

f ~(N,  fl, #a, #B)= dM dEe~NEnt~A+~B)+MtuA-~B)~/2e ~eF(E, M) 
- - n  

Now observe that the factor exp{[IN[n(#A + #s)]/2} is independent of the 
integration variables and can be written in front of all integrations. Such a 
factor in the partition function is irrelevant, since it cancels in any expres- 
sion for physical quantities (averages). Therefore the constraint of fixed n 
also implies that there are no two independent chemical potentials #A, PB, 
but only their difference 

A# = #A - #B (7) 
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matters. The final form of the partition function appropriate for the 
simulated systems then reads 

(,n 

~(N, fl, A#)= J-n dMf  dEe'eZ~MN/2e-aeF(E, M) (8) 

An analytic expression like (8) for the partition function of the systems in 
question is always an indispensable necessity if one wants to apply 
histogram methods for the data analysis. It is also easy to derive a proper 
transition probability for the Monte Carlo steps once ~ is available: A 
transition probability W(c ~ c') to go from a configuration c to another 
one c' has to obey detailed balance (38'39~ which is trivially fulfilled, for 
instance, for the Metropolis transition W(c--. c')=min{1, P(c')/P(c)}J 38) 
The probability P(c) of a configuration c can be read off directly from the 
partition function 

P(c) = ~(N, fl, A#)- l e~Z"M(c)U/2e-~E(c~ 

and the Metropolis transition probability for any Monte Carlo move can 
be written down. For instance, for the "grand canonical" relabeling of a 
chain 

W(c -* c') = rain{ 1, e -r Nz~ } (9) 

where AE is the energy change induced by the switch and the plus sign in 
front of A/~ applies to a switch A--. B, whereas the minus sign applies 
to B-*A. The parameters fl and A# can be chosen as desired. When 
compared to a corresponding magnetic system where an A-polymer 
corresponds to an up spin and a B-polymer to a down spin, the quantity 
N A/2 corresponds to the external magnetic field. 

3. HISTOGRAMS AND EXTRAPOLATIONS 

3.1. Single-Hisogram Analysis 

As emphasized in the Introduction, the key idea of the Ferrenberg- 
Swendsen method is to obtain as much information as possible about the 
critical phenomena of the mixtures not only by measuring the first few 
moments of the order prameter and the internal energy, but by recording 
the whole histogram H(E, M), i.e., storing the number of occurrences of 
any pair (E, M) measured during the simulations. Figure 1 shows such a 
histogram for a mixture of chains with length N = 32 near the critical point. 
Those histograms approach the probability distribution P(E, M) in the 
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Fig. 1. Measured histogram of a mixture with chain length N =  32 and system size L =  24 
from a simulation at (T, A#)= (69.3, 0). Each line represents the (unnormalized) energy 
distribution for a fixed order parameter. 

limit JV ~ oc, where J denotes the number of independent measurements. 
Because an analytic expression for the partition function is known [-see 
Eq. (8)], the distribution P(E, M) can be related to the phase space volume 
(5): 

JV'-IH#,F,(E, M)'~P#,u(E, M)= ~:~#(n, fl, # ) - 1  eB~uMN/Ze-#EF(E, M) (10)  

This equation can be solved to yield an approximation for F out of the 
simulation at one particular point (/3, A#) in parameter space. Now 
the crucial point is that the density of states F(E, M) is independent of the 
parameters /~ and A# (inverse temperature and chemical potential). So 
the approximation for the phase space volume can be inserted into any 
expression containing F, even if this expression is evaluated at parameters 
(/~', A#') different from the simulation point. For instance, when inserted 
into Eq. (8) one gets an approximation for the partition function at 
(/L ~s'): 

~(N, fl', AS') 

~ JV'-I~(N, fl, As) f dM f dE e(~'~"-Z~")MU/2e-(~' ~)EHz,~,(E, M) 

(11) 

Note that this expression still contains ~((N,/L AS), the unknown partition 
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function at the simulation point. But this is just a constant factor with 
respect to the parameters (/~', A/t') and reflects the impossibility of deter- 
mining the zero of the entropy. In fact this unknown factor even cancels 
out in the approximation for the probability distribution of E and M: 

PI~,,Au,(E, M)=. ~ ( N ,  fl', zJ#') l e/~"~'MN/2d--13'EF(E, M) 

,.~ .~(N, fl, A~) e (fl'Au' flA'u)MN/2e (~'-~)EH~ A~(E, M) 
.X~(N, fl', Aid) 

H~,~(E, M)e(~'~'-~N/2e-(~' ~)E 
~dM~dEH~.~(E,M)e(~,~, ~,)MN/Ze ~ , _ ~  (12) 

Using both approximations (10) and (11) for F and ~ nicely cancels all 
unknown partition functions. Having an approximation for the distribu- 
tion, one can immediately write down the corresponding equation for the 
average of any function f(E, M): 

(f(E, M) ),~,~j~, 

- JI dM f dEf(E, M) P,~,~,(E, M) 

~ dM ~ dE f (E, M) H~,j~(E, M) e(~'A~"--I~IMN/2e (~' -~)e 
S dMS dEH~,~(E, M) e(P'A~'--B'~u)MN/Ze--(~'--~)E (13) 

Thus, extrapolations to any parameter combination in the vicinity of the 
simulated parameter point for any function of the quantities (here E and 
M) for which the histogram was recorded are possible. Of course, one 
should not extrapolate too far away from the simulation point because 
then the Boltzmann weights in Eqs. (11) (13) emphasize values of (E, M) 
far out in the wings of the measured histogram where the statistics is poor. 
The best region to use histogram methods is in fact the critical region since 
there the specific heat and the order parameter susceptibility get very large 
and the histogram [-distribution of (E, M)] becomes very broad and there- 
fore suitable for extrapolations. It can be argued (35~ that the region of 
validity of the single-histogram method just coincides with the scaling 
region. 

Recently it has been suggested to not use the whole histogram for 
extrapolations but a series expansion involving only the first few 
cumulants. (4~ By this one can avoid mainly using the wings of the 
measured histogram far away from the simulation point and therefore 
extrapolations obtained with this cumutant method may be valid over 
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a wider parameter range. The questions of errors and valid ranges of all 
these extrapolation schemes are delicate matters and still under active 
investigation. 

3.2. Entropy and Free Energy 

As already mentioned, the histogram analysis via Eq. (11) automati- 
cally yields (up to a constant factor) an estimate for the partition function 
of the system, a quantity usually not accessible in simulations. Therefore all 
thermodynamic quantities such as the entropy or the free energy which 
follow directly from the logarithm of ~e can be determined up to an 
additive constant. 

To see how this works in general, let Z - Z  e - ~  be the partition 
function of some arbitrary statistical ensemble and let P=-Z- le  -B~ be the 
probability of one state of that ensemble. For instance, in a canonical 
ensemble we would have ~2 = ~2c and ~ = ~ut'(c), in the ensemble of Eq. (8) 
we have ~2 = ~ dM ~ dE F(E, M) and ~ = E -  A#MN/2. The entropy can be 
defined as 

S = - k ~  ~ P i n  P 

= kBfl(~' ) + kB In Z = --kB/~ 2 ~ (//-1 In Z) 
op 

(14) 

For the ensemble of Eq. (8) simulated here the histogram extrapolations 
(11) and (13) yield as an estimate for the entropy 

S(N, 13', JU') 

N , , 
= kBfl '(E)~,A.,-  -~ kBfl AU (m)~,~,, + kB In ~ (N,  fl', A#') 

~.kBfl' ~ dM ~ dE ( E -  A#'MN/2) Hr M) e(#'A~"--t~A~')MN/2e--(~'--#)E 
dM ~ dE H~,~u(E, M) e(P'a~'--~AtOMN/2 e--(~'--~)E 

e (fl,A#' - f lAl t )MN/2 e - (fl' - f l )E 1 

(15) 

Now the last term is the undetermined additive constant. A natural way to 
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define this constant (the zero of the entropy) is to fix the scale of the 
partition function such that 

~e(N, fl, A#) =- ~ (16) 

i.e., such that the partition function at the simulation point is just the 
number of measurements taken at that point. <36) The motivation for this 
can be seen by comparing Eq. (13) with Eq. (11). The denominator in the 
estimated average of Eq. (13) in this normalization is just the estimated 
partition function from Eq. (11) and the extrapolation equation has the 
usual form of an ensemble average. The relation between the estimated 
partition functions in this normalization (denoted by ~e) and the true 
partition function ~e also follows from Eq. (11): 

- ' ~ ( 1 7 )  3q(N, fi, A#') ~v~ oo ~/ff~(N, fl', a/~') 
Y(N, fl, a#) 

With the scale of the partition function fixed, the estimates for the entropy 
S and the free energy F at parameters (fl', Ag') obtained from a simulation 
at (B, A#) read 

k~lX(N, fl', Aft ' )= +ln ~-fl'A#'(M)~,.j.,N/2+fl'(E)B,~., (18) 

flF(N, fl', A#') = - l n  S e + fl'A#'(M)#,~,,N/2 (19) 
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Fig. 2. Entropy of mixing (--) and Flory entropy of mixing (-.-) for mixtures with N= 256 
and L = 112 as a function of temperature. 
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The free energy follows from F =  <E> - TS .  A bar over a quantity means 
the quantity in the normalization (16). Observe that the free energy is no t  

_/~-1 In ~ ,  because the ensemble is not canonical. By definition F is 
always ~ - l n  Z e -~e .  The term ~ <M)  in Eq. (19) just cancels the part 
of In N which comes from the fugacity e ~ " ~ u / 2  in Eq. (8). This reflects the 
formal difference between this ensemble and the corresponding (canonical) 
magnetic system where the interaction with the external field belongs to the 
Hamiltonian so that there is no fugacity. Figures 2 and 3 show estimates 
from Eq. (18) for the entropy as a function of temperature and of the 
chemical potential difference in the critical region for symmetric polymer 
mixtures compared to the Flory ansatz (1). The densities ~A, ~S needed in 
Eq. (1) are obtained from extrapolations of the order parameter [see 
Eq. (4)]. Even though the finite-size effects in this region prevent a quan- 
titative comparison, it seems that the Flory entropy does not even 
qualitatively describe the systems. To my knowledge this is the first direc t  

test of Eq. (1), which is the starting point of the Flory-Huggins mean-field 
theories and many of its modifications. 

3.3. Multiple-Histogram Analysis 

Even though extrapolations from a single histogram obtained at one 
parameter combination (/~, A#) already yield very good results if the 
histogram has good statistics and if the simulation point is near the critical 

Fig.  3. 

0 �9 3493  

O. 3 4 9 2  

0 .  3491 

0 .  3490  

O. 3489  

O. 3488  

0. 3487 

\ 
\ 

\ -- measu red  
\ . . . .  F l o r y  \ 

' " - . . . .  

" - - . .  

i i  I t l l  i I t 1 1 1 ] 1 1 1  i I i i  i i  I i i 1 1  I l l l ~  

0 0.I 0.2 (].3 (].4 0.5 0.5 0,7 

Ap 

Entropy of mixing (--) and Flory entropy of mixing (-.-) for mixtures with N= 256 

and L = 112 as a function of chemical potential. 
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point so that the histogram is broad, it is often desirable to combine 
histograms from several simulations either to get extrapolations over a 
wider parameter range or just to increase the accuracy if several histograms 
are available. (35) If s simulations were performed at parameters {(/~i, A#i), 
i =  1,...,s} the generalization for the basic equation (10), i.e., for the 
estimate of the parameter-independent phase space volume, reads 

F(E, M) ,.~ i wi(E, M) A/'[-I~(N, fl~, AI-h) e-~'A*"MN/2e/~'JZH/~,.~,,,(E, M) 
i = 1  

(20) 

where the weight w~ by which the histogram H~,,~, i enters can be deter- 
mined by the requirement that the statistical error AF of the estimate 
should be as small as possible. This error stems from the errors of the 
measured histograms 

AHai.a~,i(E, M ) -  [(1 + 2zi)He,.~vi(E, M)]  1/2 (21) 

where T, is the autocorrelation time during the simulation i. This time can 
be determined in the usual way (41'42) by measuring the autocorrelations of 
M and E (see Fig. 4). r can be set to zero here and in the folowing equa- 
tions if one waits long enough between two measurements during the 
simulations. But in fact this is not even necessary since the v~ cancel in the 
relevant equations (23) if they are equal. If not, they can also be ignored 
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Fig. 4. Autocorre]ations of order parameter (circles) and internal energy (squares) for a 
mixture with N= 256 and L = 112 at the critical point. 

822/67/5-6-14 



1052 Deutsch 

if they are only roughly equal, since the results, Eqs. (23), do not depend 
strongly on them. 

The optimal weights wi now follow from minimizing the error AF 
induced by the error AH by varying the wi in Eq. (20). This variation can 
be done analytically (43) and yields the optimal weights 

(1 -4-2"ci)-1 gV//~e(N, fli, z~ i )  -1 eMz1'u+MN/2--E') 
wi(E, M ) -  (22) 

Z j = I  (1 -1-2~/) - 1  Yjj~(N, flj, A[t j ) -  l e flj(&u}MN/2- E) 

With this expression for the We everything except the partition functions at 
the simulation points is known in the estimate (20) for the phase space 
volume and one can proceed in a similar way as in the single-histogram 
case to get extrapolations for the partition function, the distribution, and 
averages at an arbitrary parameter combination (fl', A#'): 

F(E, M),~X(E, M)/Y(E, M) 

~(N,  fl', A# ' )~ f dM f dEe ~'(~/MN/2 e)X(E, M)/Y(E, M) 

e ~'(A/MN/2- E) X(E, M ) / Y ( E ,  M )  

P~,,a/(E, M) ~ ~ dM' I dE' e~'(~/M'N'/2-- E') X(E', M')/Y(E' ,  M')  (23) 

( f ( E, M) ) ~,,~/ "" ~ dM ~ dE f ( E, M)e~'('~/MN/2--E)x(E, M)/ Y( E, M) 
~ dM'~ dE' e~'(~/M'N'/2--E')X(E', M')/Y(E' ,  M')  

To shorten the notation I introduced the abbreviations 

X(E, M):= i H~>~.j(E, M) 
: = 1 1 + 2~/ 

"-- i ~ j  eflj(,~ujMN/2-- E) 

Y(E, M) . -  (1 + 2rj) L/(N, fij, AUj) " j= l  

(24) 

Now observe that the multiple-histogram equations (23) can be obtained 
directly from the single-histogram equations (11)-(13) by the simple and 
very natural substitution 

H,~,~,(E, M) -+ X(E, M) 
UI/e/+(AvMN/2 -- E) 

-+ Y(E, M) 
:~(N, ~, ,4~) 

(25) 

To see this, however, one should not cancel factors ~ g / ~ ( N ,  fl, A#) in the 
derivation of the single-histogram equations to identify all the terms on 
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which the transformation (25) has to be applied. (36) This is one sign of the 
principally more information contained in the multiple-histogram 
approach. This fact clearly shows up also at the errors of the extrapola- 
tions. The relative statistical error of the extrapolated distribution is given 
by/35) 

AP~, ~,,(E, M ) _  (1 + 2zj) -1 H~j,4~j(E, M) 
PIr,,~,'(E, M) j 1 

(26) 

and can only get smaller with each additional histogram. As an example for 
an extrapolated distribution, Fig. 5 shows the order parameter distribution 
P(M) = ~ dE P(E, M) for a mixture of chains with length N = 256 on a lat- 
tice of size 1123 in the critical region. For this extrapolation five histograms 
obtained at the parameter points (T, A/~)= (525.0, 0), (531, 0), (531, 0.281), 
(541, 0) with roughly 104 independent measurements at each point were 
used. 

3.4. Se l f -Consistent  Determinat ion  of the Part i t ion Function 

Since the partition functions at the simulation points now appear in 
sums over the simulation points [see Eq. (24)], they no longer cancel in 
the extrapolations (23) as they did in the single-histogram equations (12) 
and (13). Thus they need to be determined at least at the simulation points. 

o,i[ 

~ I  0.0t G.I 

5 0 0  

Fig, ft. Extrapolated order parameter  distribution for N = 2 5 6  and L =  112 as a function 
of temperature in the critical region with A/~ = A/~ c = 0. Note the symmetric double peak 
below To. 
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Note that the extrapolated expression for ~e in Eqs. (23) inherits a self- 
consistency requirement if one choose for the parameters (/T, A/~') one of 
the simulation points. Explicitly, 

Zr(N,/h, ~k) 

=f dMf dE 
~ s =  1 ( l + 2~i) - 1Ha,~,,(E, M) e #k (AukMN/2 -  E) 

Z}=I (1 + 2zj)-I[J~j/L~(N, flj, A/~j)] e I~j(AujMN/2-E) 
Vk~ { 1,..., s} (27) 

With a suitable set .~o = (~e0,..., ~e0) of starting values this equation can be 
used as an iteration scheme to produce a self-consistent set of partition 
functions. Formally this iteration can be described with two (highly non- 
linear) operator ~ and y (vector arrows are meant with respect to the 
"simulation index" j = 1,..., s), (36) 

n + 1 ~ -  ~ y ~ n  

where the action of the j th  component of x on a function h(E, M) is 

xjh(E, M ) : =  f dM f dE L eZJ(m"MN'2 E)( 1 + 2Zi) 1nfli,.d,ui(E, M)/h(E, M) 
i = 1  

A 

V 

0.8 

0.6 

0.4 

0.2 

0 I 

50 

. . . . .  e x t r a p o l  . ~ ' ,  . .  

| n o d a l  

I I I I I I I I I I I I t I I I I I I I I I 

55 60 65 70 75 

kBT/E 

Fig. .  6. Order parameter (phase diagram) for mixtures with N =  32 and system sizes as 
indicated in the figure. Symbols denote averages measured during simulations, dash-dotted 
lines denote the histogram extrapolations. The full line is the binodal resulting from finite-size 
scaling. 
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and the action of y on a vector ~ is 

Yg := L e&(AujMN/2--E)( 1 + 2zJ)-~/]/gJ 
j = l  

A set fro of starting values which produced a very fast convergence of the 
iteration in all cases is o ~ j  = ~ j ,  motivated by Eq. (16). Then the self- 
consistent set of partition functions at the simulation points after n 
iteration is 

~n= [Ry]~A~ (28) 

The convergence of the iteration was so fast that for all investigated 
systems after less than 100 steps the relative difference between two genera- 
tions of partition functions fell from ~ 1 to a value less than 10 lO, 

I ~ - 1 ~o <1o Vke {1,..., s} 

This criterion was used to stop the iteration. (36) Only after the partition 
functions have been determined in this way can the extrapolation equations 
(23) be used. Of course this procedure again can only produce the partition 
functions up to a common constant factor. But this undeterminable corn-  

5 o  

o 243 '} 
m 323 '\ \ 

40 ~ 403 'i / 
{NA E ~ 5153 " ~ \ \  

30 ..... e x t r a p o l  . a~ '\', \ v 
, - -  . , , ,  

50 55 70 75 80 

k B T / E  

Fig. 7. Susceptibility for mixtures with N = 32 and system sizes as in Fig. 6. Again symbols 
denote measured averages and dash-dotted lines histogram extrapolations. The full lines are 
the L --~ oo limit from finite-size scaling. Note that above To, <m 2 ) - <m> 2 is a factor of ~2.8 
larger than < m 2 > -  <lml >2, as discussed in the Appendix. 
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Fig. 8. 
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Specific heat for mixtures with N =  32 and system sizes as in Fig. 6. Again symbols 
denote measured averages and lines histogram extrapolations. 

mon factor is irrelevant (i.e., cancels) in Eqs. (23) and again reflects the fact 
that the zero of the entropy cannot be obtained. Figures 6-7 and 9-11 
show the order parameter, its susceptibility, and the specific heat as a 
function of temperature in the critical region for mixtures with chains of 
length N = 32 and N =  128, respectively. The plots of the order parameter 
along the temperature axis can be viewed as the phase diagrams of the 
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Fig. 9. 
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As Fig. 6, but for chain length N = 128. 
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Fig. 10. As Fig. 7, but for chain length N= 128. 

mixtures. Since the mixtures are fully symmetric, only the part for positive 
order parameter is shown [see Eq. (4)].  The binodal is obtained by the 
finite-size scaling methods described below; also the spinodal can be 
obtained by extrapolation of the inverse collective structure factor (making 
extensive use of the histogram methods) as described in refs. 44 and 36. 
Table I shows where and with how much statistics the histograms used for 
the extrapolations were obtained. 
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As Fig. 8, but for chain length N= 128. 
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Table I. S imulat ion Points and Statistics 

N T A# 

32 69.3 0 22800 
68.7 0 13968 
68.7 0.281 13920 

128 262.8 0 5520 
266.4 0 16800 
283.0 0 7920 
288.1 0 13200 
277.1 0.281 18360 

As can be seen in the figures, for N = 32 many more simulations were 
done with only the conventional averages recorded and the extrapolations 
nicely go through all these data points. Therefore all the computer time for 
these additional runs could have been saved (and indeed has been saved for 
the longer chain lengths) because they do not give any more information 
than already contained in the few histograms of the above table. (But of 
course they still were necessary to judge the validity of the method). 

Another example of what can be obtained from the histograms is 
shown in Fig. 12, which shows the equation of state m(T, Al~) as a com- 
plete surface over the entire critical region for the mixture with N = 256. To 
obtain such a surface with conventional methods would require an 
extremely large simulational effort with many different simulation points. 

0. B 

0. g 

- ~  0 ,4  
V 

0.2 

600 0.6 

550 0.4 

Fig. 12. Equation of state from multiple-hisogram extrapolations over the entire critical 
region for a mixture with N =  256 and L =  112. 
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3,5. Genera l i za t ion  to A s y m m e t r i c  M i x t u r e s  

The generalization of the histogram methods to extrapolations other 
than in the direction of temperature and chemical potential (external field) 
is straightforward and will briefly be demonstrated for the case of polymer 
mixtures with asymmetric interaction potential. (36) Instead of Eq. (2), let us 
now consider the case 

~BB ~ --GAB ~ --l?,~ ~AA ~ -- ')~ (29) 

Here 2 = EAA/~BB is called an asymmetry parameter. The internal energy in 
these systems is 

E = - - e ( 2 n A A  + nBB - -  n A B  ) (30) 

where ntj denotes the number of interactions between monomers of species 
I and J. One can establish equations similar to (23) for extrapolations in 
the direction of 2 as well as in the direction of fl and A/~. Since one now 
has one more direction to extrapolate into, slightly more detailed 
histograms are necessary. As can be seen from Eq. (30), instead of 
recording histograms for M and E, one should now record histograms of 
(M, nAA, nBB, nAB). Then extrapolations with respect to fl, A#, and 2 are 
possible. The equations look exactly the same as Eqs. (23) except that 
instead of Eq. (24) the quantities X(E, M) and Y(E, M) now read 

H~j.,j~j,#( M, nAB)  
X ( M ,  nAA , nBB , nAB ) = 

nAA~ rl BB, 

j= l 1 + 2zj (31) 
~jcflj(AI#)MN/2 + e().jnAA + nBe + nAB)) 

Y( M, nAA, nBB, nAB) = Z. (1 + 2rj) ~(N, /~j ,  ~Uj, ,~j) 
j = l  

and the integrations in Eqs. (23) are over those new arguments of X and I1. 
One need not worry that such high-dimensional histograms have very poor 
statistics in each entry--probably only zero or one event--because the 
extrapolation equations always integrate over all the entries of the 
histogram and therefore only the statistics of the whole histogram are 
relevant, but not the statistics of the individual entries. In fact it is wise to 
store the histograms as lists, i.e., to write down each pair (E, M) or each 
quadruple (M, nAA, nBB, nAB) when it is measured, no matter whether it 
did occur before or not. In this way the amount of information to store is 
of the order of the number of measurements taken, whereas, if one would 
store true two- or four-dimensional histograms one would (especially for 
large systems, where M and E or the nij have wide ranges) have to store 
huge arrays mostly containing zeros. Also, by storing the histograms as 
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lists one truly keeps the complete information generated by the simulations 
and avoids all systematic errors connected with dividing a histogram into 
bins. 

4. FINITE-SIZE SCALING AT THE UNMIXING TRANSITION 

4.1. General Aspects 

A common practice in the physics of critical phenomena (45'46) is to 
expand the second derivatives of the free energy (which diverge at a 
second-order transition point) and certain first derivatives like the order 
parameter (which vanishes at the transition point) with respect to powers 
of the distance from the critical point, 

g(t, ~ =- O) = atX(1 + bt y + -..), y > 0 (32a) 

o r  

g(t=-O,#)=aktX(l+blaY+ ...), y > O  (32b) 

Here t and/~ denote, respectively, the normalized distances of temperature 
T and chemical potential difference (per monomer) A# from their critical 
values T c and A#c: 

t := 1 - TITs, p := N(A# - Ap~)/kB T (33) 

Note that /~ is normalized per chain to make the analogy to a corre- 
sponding magnetic system as complete as possible. In Eq. (32) the prefactor 
a is called the critical amplitude and the exponent x the critical exponent 
of the quantity g. Since y > 0, it is clear that close to the critical point, in 
the so-called scaling region, g is completely described by its critical 
amplitude and its critical exponent. Therefore much effort has been devoted 
to the determination of the critical exponents (and amplitudes) of many 
statistical systems. (45'47/Common symbols have been established to denote 
the critical exponents for the order parameter m, its susceptibility )6 the 
correlation length of the order parameter fluctuations 4, the specific heat C, 
and the pair correlation G(r := I~'-r~ ): 

C ~ t  -~, m,.~t ~, Z ~ t - ~ ,  ~ t  -v, for t---tO, #=-0 

m ~ #1/~, )~ ..~ #-~/~, ~ ..~ #-v/~, for t = O, ~t --, 0 

G ( r ) ~ r  -(d-2+~) for t~_O, #-=0 

(34) 

The exponents of Z and ~ along the critical isotherm (t---0, ~ ~ 0) are 
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determined from m ~ #  l/a, z ~ O m / @  with the help of the scaling 
relations (37.45) 

7 = v(2 - r/), 6 = 1 + 7//3 (35) 

These equations, which should hold for any system, do not contain the 
system dimension d. There is another set of equations, the so-called hyper- 
scaling relations, (37'48'49) which do contain d and do not hold for every 
system (for instance, not for mean-field systems except at the marginal 
dimension d = 4): 

d v  - 2/3 = y " ~  ~ = 2 - d v  (36) 

This has all been well known for many years and is only stated here to 
introduce the notation. Also well known is that many statistical systems 
can be put into only a few so-called universality classes (37'45) where the 
critical exponents are the same within each class. For instance, for the 
universality class of the 3D Ising model the exponents are (s~ 

~=0.113, /3=0.324, 7=  1.239, 6=4.82, v=0.629, r/=0.031 (37) 

Three-dimensional polymer mixtures of not too long chains very close to 
the critical point should belong to this universality class on theoretical 
grounds (mapping onto the corresponding Ising system, Ginzburg 
criterion) which by now is well established experimentally (17) as well as by 
Monte Carlo simulations. (18) But for long chains, N-+ 0% the Ginzburg 
criterion (1>16) also implies that the mixtures should display mean-field 
behavior, i.e., 

e = 0 ,  /3=1/2, 7=1 ,  6 = 3 ,  v = l / 2 ,  r /=0  (38) 

In this case hyperscaling (36) is not valid. 
Now all the singularities of the second free energy derivatives at the 

critical point can be traced down to stem from a diverging characteristic 
length of the system. This characteristic thermodynamic length 1 in 
general (51-53~ diverges like 

l .,~ t -  (~ + 2t3)/d (39) 

and becomes the correlation length r if hyperscaling is valid. Since in the 
finite systems accessible by computer simulations there cannot exist a 
length larger than the system size L, the finite size of the systems will 
obscure the physics as soon as the system is so close to the critical point 
that its characteristic length starts to exceed L, i.e., as soon as l >  L (or 
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~ > L  in the hyperscaling case). Therefore no true singularities can be 
measured and the susceptibilities in Figs. 7 and 10 show the familiar finite- 
size rounding and the order parameter in Figs. 6 and 9 the finite-size tails 
near Tc. These effects are well understood and can be taken into account 
by the finite-size scaling theory (54 57) which (for systems of hypercubic 
shape (51'57)) can be summarized in a very general and complete form by 
two equations for the size dependence of the free energy per particle F and 
the correlation length 3: 

F(L, t, #) = L-dF(L"t, L d ~#), 

with the abbreviations 

~(L, t, #) = L~(L~t, L d- '#)  (40) 

d = l i l y  fld = ~B/v hyperscaling (41) 
u := 7 + 2/? (d/2 v := 7 + 2/? (d/4 mean field 

~ = 2 _ d ,  fl v d -  2v d 
= - ,  ~ - , 6 = - -  1 ,  etc. (42) 

U U U ~) 

In Eq. (40) and in the following a tilde denotes a size-independent function 
of the arguments. This general scaling form of the free energy determines 
completely the finite-size scaling of any moment of the order parameter or 
the internal energy, which are just derivatives of the free energy. 

A more pedestrian derivation of finite-size scaling starts with an ansatz 
for the order parameter distribution Pt.~(m) allowing explicit and implicit 
L dependence of P through all its variables, i.e., P = P(t(L), #(L), m(L), L). 
The basic scaling assumption that the thermodynamic length l, Eq. (39), is 
the relevant length scale in the system, i.e.,that L has to be measured in 
units of l, the normalization condition ~ dm P(m) = 1, and the requirement 
that near the critical point the power laws (34) for the moments of the 
order parameter have to be reproduced by its distribution, lead O6) to the 
finite-size scaling form 

P(t(L ), #(L), m(L), L) = L@(L~t, L a- ~#, L~rn) (43) 

Figures 13 and 14 show this scaling behavior for the order parameter 
distribution of mixtures with chain length N =  32 and N = 64, respectively. 
For N =  64 the (effective) exponents are no longer Ising (see Table II), but 
the scaling form (43) is of course still valid. From this distribution the 
scaling of the moments follows directly, 

( m k )  L = L-kVrhk(L,t, t d v#) (44) 

with scaling functions r~k= ~ dx xkP(LUt, La-V#, x). As the scaling form 
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(40), this general scaling is valid with and without hyperscaling. Incor- 
porating hyperscaling (36) and using Eqs. (42) and (35), one arrives at the 
more familiar form 

( m k J L  = L-k#h~k(L1/Vt , La#/Vl~ ) 

(mk)L  = L - k ( d -  2 +.)/2 yk( L l~, L (d-  2 +.)a/2fl) 
(45) 

Fig. 14. 
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Table II. Critical Temperatures, Exponents, and Amplitudes 

N k,</~ u ~ c'~ c~ c'~ c ; '  c;. c7 

Ising 1/v = 1.59 fl/v = 0.51 

16 36.15+0.20 1.56___0.03 0.50+0.02 1.38 0.995 0.20 0.96 0.40 0.59 
32 69.35+__0.30 1.59+0.03 0.505+0.02 1.36 0.98 0.18 0.86 0.37 0.57 
64 138.9___0.2 1.53_0.03 0.565-1-0.02 1.39 0.964 0.24 0.82 0.43 0.56 

128 277.7+0.6 1.58+0.04 0.561+0.03 1.29 0.956 0.27 0.72 0.45 0.50 
256 540.6_ 10 1.53-t-0.04 0.623_0.04 1.51 1.03 0.25 0.85 0.49 0.76 

Mean field d/2 = 1.5 d/4 = 0.75 

In the second equation I eliminated t in favor of the correlation length 
[see Eq. (34)]. Comparing the explicit L dependences in the prefactors of 
these scaling forms, one immediately recognizes hyperscaling. These forms 
are valid for the limiting behavior of the polymer mixtures with short 
chains, namely in the Ising limit (37). The scaling forms in the long-chain 
limit follow from Eqs. (44) and (38) yielding the mean-field finite-size 
scaling 

( mk >L = L -kd/4rhk(Ld/2t, L3d/4/~) (46) 

At this point I should mention that for polymer systems one has to be 
very careful in chosing the scaling variables. In fact, if the chain length N 
is not held fixed, then L is not the right scaling variable because it is not 
uniquely related to the number of degrees of freedom involved in the 
phase transition. Then the number of chains (number of spins in the 
corresponding magnetic system) n ~ Ld/N rather than L is the right scaling 
variable and one should replace L by L N  -lId in all scaling forms. This 
subtlety need not be considered if N is a fixed parameter as in spin systems, 
where one could say N - 1 ,  or in the analysis presented here, where 
finite-size scaling is considered for each chain length separately, but it 
becomes relevant in the recently derived (44'36) crossover finite-size scaling 
equations, where L and N are allowed to vary simultaneously. 

4.2 .  R a t i o s  o f  M o m e n t s  

Equation (44) implies that there is no explicit size dependence in ratios 
of the form 

l k <m > L rht( L~t, Ld-~#) k 
U~k(L, t, #) <mi> ~ rhi(LUt, L d  - v]2) ] with lk =/ j  (47) 



Critical Behavior in Polymer Mixtures 1065 

because the prefactors cancel. The only L dependence left in these ratios is 
implicit via the variables of the scaling function r~ k. Right at the critical 
point where (t,/~) = (0, 0) there is no L dependent left at all (apart from 
corrections to scaling, which currently cannot be resolved in polymer 
mixtures, however) and the U~k(L, t, #) for different L should coincide at 
this point. The intersection of U~k(L, T, AI~ = A#c) with different L then 
yields T c. This is nicely demonstrated in Figs. 15 and 16. I used the ratios 
involving the smallest possible moments, since they have the best statistics, 

m2 )L  
21 ~ (48) Ua2(L, t,/~) = ( Iml )~  

Note that there is the estimator for the absolute value {]mJ) in the 
denominator and not just {m).  This is necessary for all odd-order 
parameter moments to obtain sensible results in the thermodynamic limit 
as discussed in detail in the Appendix. Note that this determination of Tc 
is independent of the critical exponents. 

Another ratio out of the family (47) has previously been used in the 
literature to determine Tc, namely Binder's cumulant or renormalized 
coupling constant, (58) which corresponds to U24~. This has the disadvantage 
that it needs moments up to fourth order, but since it involves only even 
moments, one need not worry about using absolute values. 

While the ratio (47) was constructed to eliminate the explicit L 10! 
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Fig. 15. U~ as a function of temperature with # =- 0 for chain length N =  64 and system sizes 
as indicated in the figure. Note the sharply located intersection point yielding T c and U*. 
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Fig. 16. 
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U ~  as a function of temperature with #-= 0 for chain length N =  128 and system 
sizes as indicated in the figure. 

dependence from Eq. (44), one can on the contrary use this L dependence 
to determine the exponent v by constructing ratios of the form 

/(mk)L2\l (L2) 
W~(L2' Ll '  t' #) := - ln  t ~ ) / l n  -~1 

" ~ L2 m /ln L2 
= kv - In t, rhk(L~ 1 t, L~-~IX))I -~ (49) 

At the critical point (t, Ix) = (0, 0) the scaling functions mk are both equal 
to Nk(0, 0) and Wk becomes W~(L2, L1, 0, 0 ) = k v ,  yielding directly the 
exponent v. Again for best possible accuracy I use the ratio involving the 
smallest moments and since these are odd moments the absolute value of 
the order parameter is needed (see the Appendix): 

(((Iml)l"2~/ln(L2) 
I,V,(L2, LI, t, Ix)= - in  Iml )z,)l ~ (50) 

In Fig. 18 this function is shown for the mixture with N = 64. For this chain 
length WI(Tc) already lies above the Ising value but is still far away from 
mean field. The crossover from Ising to mean field is discussed in detail in 
refs. 44 and 36. 

Now one critical exponent is not enough. To determine the whole set, 
at least one more is needed. Since the explicit L dependence in Eq. (44) 
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only provides v, the only chance to obtain another exponent is the implicit 
L dependence of rhk in Eq. (44). This implicit dependence can be made 
explicit by a Taylor expansion around the critical point. A suitable function 
for this again is provided by the ratios in Eq. (47), 

U(LUt, L a- ~ )  

. 8U La_ ~ ~U i + ... (51) 
+ kt3(La '#)it=o,~=o ~ v(0, 0 ) + L  t ~(-Z- ~ ,~0,~=o 

U* ~ 
A B 

To simplify the notation, the indices i, j, k, l of U are omitted here. Since 
by construction U is not explicitly L dependent, the value of U at (0, 0) 
and all its derivatives at (0, 0) are completely independent of L, so that the 
only size dependences up to first order are the ones explicitly shown above. 
Now if among the family of ratios (47) there exists a function U which is 
sufficiently linear near the critical point, then the exponents of the scaling 
variables L"t and La-~kt can be measured by considering U(L2) as a 
function of U(L1). The derivative of this new function up to first order 
yields 

dv(L~, L~,, o~ u * v ( L ~ , L ~ t , o ) - v * ~ ( L ~  ~ 
dV(L1, L"t, ~ U(Lt,  LUt, 0 ) -  U* \ - ~ /  for #-= O (52) 

dr (L2 ,  O, L d-o) ~ V(L2, O, L ~ ~ ) -  V* ~ (L2~ ~-~ 
dU(LI,0, L a-v) u*~U(Ll,0, Ld-V) - o *  \--~lJ f o r  l = - O  ( 5 3 )  

In the first step the differential was approximated by the difference 
quotient, in the second step the Taylor expansion was used. Figure 17 
shows the ratios U~(L,  t,/~ -~ 0) as functions of each other. They intersect 
each other at U* 21 = U~2(0, 0), where they are sufficiently linear. The 
exponent u can be determined from the slope of these functions at U*, i.e., 
by fitting straight lines to the functions at U*. It can already be seen from 
Figs. 15 and 16 that the ratios U~221 are sufficiently linear to apply the above 
method. 

Since these functions are linear over a quite large range around U* 
(i.e., around Tc), the exponents determined in this way are not as sensitive 
to errors in Tc as are the exponents determined with Wk, Eq. (49). On the 
other hand, there are more approximations involved like the Taylor expan- 
sion, the difference quotient instead of the differential, and the fitting of 
straight lines to the functions as U*. Altogether it is hard to say which 
method is more accurate and certainly other systems than polymers 

822/67/5-6-15 
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are much more suitable for high-precision measurements of critical 
exponents.(S9) 

Of course the measured exponents for the long chains which are not 
Ising nor mean field are to be understood as only effective exponents 
resulting from the system crossover from Ising to mean field as is discussed 
in detail in refs. 44 and 36. 
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Fig. 19. 
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N = 32, system sizes as in Fig. 6, meaning of lines as indicated in the figure. 

The critical exponents and temperatures obtained with this analysis 
can be checked in so-called finite-size scaling plots where the scales of the 
axes are chosen such that the curves for different L collapse on one master 
curve if the exponents (and To) used are right. Figures 19-24 show such 
plots for mixtures of chains with N =  32 (which still belong to the Ising 
limit) and with N =  128 (which are significantly off the Ising limit). The 
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Scaled order parameter along the temperature axis for the mixture with N= 128, 
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Fig. 21. Ising-scaled order parameter along the critical isotherm for the mixture with N =  32, 
system sizes as in Fig. 6, meaning of lines as indicated in the figure. 

scales of  the  axes  fo l low f r o m  Eq.  (44), wh ich  for the  o r d e r  p a r a m e t e r  

( I m [ )  and  its suscept ib i l i ty  kB TZ = Ld( ( m  2 ) -- ( m ) 2 )  r ead  

t ~ (  Iml ) = rh(t"t ,  L d- ~#), L 2v dk B T Z = ~((LUt, L d ~#) (54) 

In  the  I s ing  reg ime ,  whe re  h y p e r s c a l i n g  is val id ,  this can  be  wr i t t en  as 

L~/~( [m[ ) = fft(L1/Vt, L~/~p), L-~/~kB T7 = ~(L~/Vt, LS~/v#) (55) 
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Fig. 23. 
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Here I also show the scaling of Z as a function of m instead of #, which 
should be measurable experimentally. This scaling follows easily from the 
above equations and reads 

t t~ ZtL mL) 

Ising 
(56) 
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Fig. 24. Scaled susceptibility as a function of the order  pa ramete r  for the mixture with 
N = 128, system sizes as in Fig. 9, meaning of lines as indicated in the figure. 
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Similar scaling plots along the temperature axis can also be found for short 
chains in ref. 18, while to my knowledge the finite-size scaling of polymer 
mixtures along the critical isotherm and as a function of m was not 
investigated earlier. 

The scaling plots also yield the critical amplitudes if part of the 
so-called asymptotic regime lies within the scaling region, i.e., within the 
region where Eq. (34) or (44) is valid. This is the case for large enough L. 
The asymptotic regime of an L-dependent quantity g is the region which is 
far enough away from the critical point such that the value of g coincides 
with the values of g measured at larger systems, i.e., the set 

{ T, A~ I gL( T, A#)= gL,( T, A#) VL' > L } 

For instance, if Figs. 6-9 a little below Tc the curves with different L merge 
together. For large L this region is still within the scaling regime and the 
scaling function rh(x = L"t, 0) in Eq. (54) has to be ~ x  ~,/~ in general from 
Eq. (42), to compensate the L dependence. Since rh is a scaling function, 
the proportionality constant C'm is independent of L. In the asymptotic 
regime the scaling forms (54) and (55) for the order parameter then simply 
are 

( Im l )  = C~t  ~ (57) 

and the constant C~ is the critical amplitude of the order parameter along 
the temperature axis. Therefore in the logarithmic plots of Figs. 19 and 20 
the curves in the asymptotic regime merge to a straight line with slope/~ 
and offset C~. 

Similar considerations also hold along the critical isotherm yielding 
the amplitude C~ from Figs. 21 and 22, and from Figs. 23, etc., one gets the 
critical amplitudes for the susceptibility. This method to measure critical 
amplitudes from finite-size scaling plots is standard and has been applied 
to many systems. It is well known that the errors involved are rather large, 
especially if (as in the case here for long chains) the errors of the exponents 
are already large. Usually one "knows" the exponents already because the 
system belongs to a known universality class (as is the case here for short 
chains). For long chains, however, the errors induced by the measured 
effective exponents are magnified to a great extent in the errors of the 
effective critical amplitudes. Nevertheless the critical amplitudes, exponents, 
and temperatures obtained with this analysis provided a rather satisfying 
picture of the L ~ ~ behavior of the investigated polymer mixtures. See, 
for instance, the phase diagrams in Figs. 6 and 9, where the binodal is just 
the asymptotic limit rn --- C~ t t~ of the order parameter; or the L --* ~ limit 
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of the susceptibilities in Figs. 7 and 10. For the susceptibilities the critical 
amplitudes below and above Tc are different and there is an additional 
subtlety in the question of where to use ( [m[)  or ( m )  (see the Appendix). 

4.3. Der iva t ives  of  in 

From the correspondence between the (almost) grand canonical 
ensemble (8) of our polymer mixture and the canonical spin system it is 
clear that In(~)  with the Y" of Eq. (8) has a similar scaling form like F in 
Eq. (40). Since ~ in Eq. (8) is the partition function of the whole system 
(not per particle) the correspondence is - k  B Tln ~e ~ LeF. The finite factor 
k~ T does not influence the scaling behavior, so that the finite-size scaling 
of In ~ becomes 

In ~e = 2(L , t ,  L d- ~#) (58) 

For scaling considerations of In ~ it is convenient to change the set of 
parameters (fl, A~t) in the partition function (8) to a set (/3, ~c) with the new 
parameter 

N 
~--- k ~ A / ~  

This is only a modification with finite quantities of the parameter 
describing the chemical potential and does not affect the scaling behavior. 
Just use/~ = 2(to - ~Cc) instead of Eq. (33). Like (fl, Ag), the set (8, ~c) can be 
treated as independent parameters. The partition function (8) then simply 
reads 

(59) 

Equations (58) and (59) are the two basic equations from which the finite- 
size scaling of a variety of moments and cross correlations of energy and 
order parameter follows. The relations between the derivatives (Off?t, ~?/i~#), 
which applied to Eq. (58) yield the scaling, and the derivatives (~?/Ofl, O/&Q, 
which applied to Eq. (59) yield the moments, involve only finite factors, 

a kB Tcfl 2 # # 1 
~t ~fi' ~# 2 ~tc 
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Therefore it does not affect the scaling if the one or the other set is used. 
For instance, for the first derivatives of In ~ one gets 

L~,(L~t, L a- ;#) = ~ In 5~ ~ In ~ = - <E> 

La-~g(L~t, La-~#) : ~ ln ~ ~-~ ln ~Y= ( M> 
(60) 

Here the symbol ~ means has the same scaling behavior as and ~ denotes 
the appropriate scaling functions (I do not bother to write a different 
symbol for each scaling function). The last equation is of course consistent 
with Eq. (54); observe that M denotes the extensive order parameter, 
m-Ldm. 

Similarly, one obtains for the finite-size scaling of the second 
derivatives 

~2 
L2~,(L~t, Ld-O#)~ -~ In Y~ = ( E 2 >  - ( E )  2 ~ LaC 

~2 
L2d-2~s Ld-~/~)~K 2 In ~ = < M 2 > -  <M>2~Ldz 

La+~-~,(L~t, Ld-~#) ~ ~ In ~e = <ME> - < M > < E >  

(61) 

In this way different exponent combinations appear in the explicit L 
dependence (prefactors of the ~), which then are easily measurable as 
described below. Still other combinations, namely precisely the ones of the 
implicit L dependences of the scaled variables in the g, can be made 
explicit by considering logarithmic derivatives of In ~ :  

L~g(L~t, La-~l~)~~---~In~In~ . . . .  

0--fl In In ~ = 

Ld-~(L~t, Ld-~iz)~ ~--~ ln ~----~ ln ~r 

( E 2 )  

<E> 
+<E> 

(EM> 
+<E> 

<M> 
<M2> 

<M> 
<M> 

(62) 

3 ~ <EM> ( M >  

The exponent of the explicit L dependences of such functions can be 
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Fig. 25. 
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measured by evaluating those functions at fixed arguments (x=L"f, 
y =  La-V#) of ~. Since ~ is an L-independent scaling form, ~(x, y) is just a 
constant if evaluated at some fixed arguments (Xo, Yo) Therefore a log-log 
plot of the right-hand side of the above equations for different L but fixed 
scaling arguments (Xo, Yo) versus L should show a straight line with a 
slope equal to the exponent of the explicit L dependence on the corre- 
sponding left-hand side. This is demonstrated in Figs. 25 and 26, where the 

Fig. 26. 
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magnetization at the critical point, i.e., at constant scaling variables 
(Xo, Yo)= (0, 0) and the maximal susceptibility, i.e., the susceptibility at 
constant (Xo, yo) = (x*, y*), where the corresponding scaling function 
has its maximum, are plotted versus L. Observe that in principle it is better 
to use a function at its extremum instead at the critical point because then 
the obtained exponent is independent of the determination of Tc. That is 
why I presented so many possibilities to extract the exponents. The strategy 
then is to find suitable functions which have extrema within the scaling 
region and to extract the exponents from the values of these functions at 
their extrema. The necessity for the logarithmic derivatives, Eqs. (62), then 
results because they are the only functions which provide the pure inner 
exponents and still may have an extremum inside the scaling region. This 
gets clear when hyperscaling is valid. Then Eqs. (61) and (62) become 

Ld+~/v~ ( M  2 ) --  ( M )  2 

La+=/v~ ( E  2 ) - -  ( E )  2 

Ld+(1-/~)/v~ ~ ( M E ) -  ( M ) ( E )  (63) 

L1/V~ , ~  (E )  - ( E M ) / ( M )  ,-~ (E )  - (E2 ) / (E )  

La~/v~ - ( E ) +  ( E M ) / ( E ) ~  - ( M ) +  ( M 2 ) / ( M )  (64) 

In this picture the logarithmic derivative in the second from last line is the 
only way to extract v disentangled from any other exponent. 

Along the same lines one can of course construct many other 
functions, such as 

0k+l ~k ~t 
~flk &Ci In ~e and ~ In ~ In 

In fact, some of these, such as 

02 ~ t~3 
Off 0----~ in ~ ~ ( M )  or 3fl 20~ In Lr 

0 2 

have been used in recent high-precision simulations of the 3D Ising 
model.(59) 

5. C O N C L U S I O N S  

In this work I outlined a complete description of how to get informa- 
tion about the critical behavior of polymer mixtures by computer 
experiments, which because of the fundamental difficulties (a)-(c) men- 
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tioned in the Introduction has up to now not been performed for long 
chains. While with the bond fluctuation model (26) and the grand canonical 
simulation techniques (18) described briefly in Section2 two of the 
fundamental difficulties can be overcome rather easily, the main topic here 
was to get around the remaining point (b). This was achieved by applying 
multiple-histogram extrapolation techniques recently formulated for spin 
systems (35) to polymer mixtures, thereby enhancing the amount of informa- 
tion extractable from a simulation run by at least one order of magnitude 
(see Section 3). 

As also shown in Section 3, these techniques can easily be generalized 
to other parameters than temperature and chemical potential, and are 
therefore well suited to be applied to asymmetric mixtures. In fact, since 
with asymmetric monomer interaction potentials the critical point of 
unmixing moves away from the temperature axis (A#~ r 0), the histogram 
extrapolations which allow continuous scans of two (or more) parameters 
over the entire critical region may be the only chance to find the critical 
point at all. Indeed, without histograms it would already be hard to find 
a sensible point in parameter space at which to run the simulation! But 
with the histogram method the procedure to locate the "optimal" simula- 
tion point is easy: 

Use the histograms from the symmetric mixtures to extrapolate the 
order parameter susceptibility Z to a small asymmetry. Locate tBe maxi- 
mum of X as a function of the two parameters (T, A/~). This maximum is 
already near the critical point of the asymmetric mixture and in any case 
is the best point to perform an additional simulation for the asymmetric 
mixture, since there the new histogram will be very broad. Now use the 
new histogram (combined with the old one) to extrapolate to even larger 
asymmetry and again locate the maximum of Z, etc. For a mixture of chains 
with length N =  32 the maximum of Z for various asymmetry parameters 2 
(see Section 3.5) is off the temperature axis by an amount of A~t = -0.23 
for 2=  1.1, already by A/~=-1.3 for 2=  1.5, and up to A#- - -2 .3  for 
J~ =2.0, (36) showing drastically how hard it would be to find the critical 
point of asymmetric mixtures just by wildly guessing the simulation points 
without having continuous information over the critical region available! 

Another advantage of the histograms is that one does not need to 
know what exactly are the best quantities to measure at the time the 
simulation runs. One just records histograms and, since the complete infor- 
mation about the phase transition is contained therein, later any desired 
function out of the many (sometimes new and unconventional) possibilities 
presented in Section 4 can be calculated within minutes on a work station. 

As an example system for this study, I used symmetric polymer 
mixtures at density ( 1 -  ~b~)=0.5 with chain lengths ranging from N =  16 
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to N=256.  The critical behavior of these systems is summarized in 
Table II. Here the exponents and critical amplitudes of the order parameter 
and the susceptibility for N >~ 64 are to be understood as effective quantities 
as mentioned in the text. The physical interpretation of these results can be 
found in refs. 44 and 36. 

The histogram extrapolations together with suitable finite-size scaling 
functions from Section 4 provide powerful tools to extract reliable informa- 
tion about critical points, exponents, and amplitudes out of data with 
far less statistics than previously neccessary. Therefore even mixtures of 
relatively long chains can be investigated. Instead of enlarging N, another 
direction for which these new advantages may be exploited is to investigate 
mixtures with large asymmetries. There the computer time is mainly needed 
for canonical relaxations between two switches if the asymmetry is so large 
that the chain configurations of the A and B species are significantly 
different. Besides the already mentioned asymmetry in the monomer poten- 
tials, the rich possibilities of the bond fluctuation model can be used to 
simulate different chain stiffnesses, bond length distributions, or even 
different chain lengths. 

APPENDIX.  S P O N T A N E O U S  S Y M M E T R I C  BREAKING A N D  
THE T H E R M O D Y N A M I C  L IMIT  

With finite-size scaling techniques as described in Section 4 the physics 
in the thermodynamic limit can be obtained from the finite systems with 
one important exception: There is no spontaneously broken symmetry of 
the order parameter distribution in the finite systems and it cannot be 
produced in the L --* ~ limit of finite-size scaling. In the two-phase region 
below Tc the distribution of m is still fully symmetric with two peaks at 
+_m o (see Fig. 5) if (as is the case here) the simulated systems are so small 
that the energy cost to build an percolating interface between a + m0 
and - m o  domain, necessary to switch the average magnetization, is 
small enough to happen quite often during the simulation. Therefore all 
odd moments of the order parameter vanish, in striking contrast to the 
thermodynamic limit. 

A common practice (39) to introduce spontaneous symmetry breaking 
"by hand" is to use the absolute value [ml for odd moments, which should 
have the right limiting behavior 

(im2k 11) L L ~ ,  mZl,_x 

To decide where to use m and where ImL in the finite-size scaling techniques 
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of Section 4, let us assume that P(m) in the thermodynamic 
Gaussian peaked around m0, 

P ( m ) =  1 I 1 1 (2~ra2)v 2 exp - ~ 2  ( m -  mo) 2 

with 

1 0 7 9  

limit is a 

(A1) 

m o = ( m  ), f f 2 = ( m 2 ) - < m ) 2 = k B T Z L  J (A2) 

This is also the limiting distribution for the finite systems of computer 
simulations in the one-phase region, i.e., for symmetric mixtures in the 
region where T >  Tc or A# # 0. But in the two-phase region T <  To, A# = 0 
the L --+ oo limit from finite systems is not the above asymmetric distribu- 
tion, but (to a very good approximation, except close to m = 0 (58"39)) 

l 1 1 1 (m +mo)21} P(m)=(2~2)l/2 {~exp [ -  ~5~2 (m-mo)2] +~exp l-- 2cr---5 
(A3) 

With these two distributions any function of order parameter moments can 
be calculated in the thermodynamic limit or in the limit L --+ oo from finite 

Table III. The Limits L -~ oo 

L ~ oo with symmetry breaking 

L ~ ,2 without symmetry breaking 

Two phases: 

A# = 0, T <  T C 

One phase 

A#=O, T> T C A##O 

Two phases: 

A#=0 ,  T <  T c 

(m) 0 0 mo 
< [ml } Imd (2/n)l/2G [mol 
( m  2 ) 0.2 + m 2 0.2 0.2 + m 2 

L a( < rn: ) -- ( m )  2) o(37 ku T Z ku T Z 

Ld( (m2)- - ( [ml )2)  k B T •  ( 1 - 2 / z ) k B T z  kBTZ 

(m 2 ) / ( m  )2 (m 2 + 0-2)/09 0-2/0 --+ 0/07 1 

(rn2)/(jml )2 1 ~ 1 

(m4) / (m2)  2 1 3 ! 

WI(L> LI, m) Mn(O/O)?  ~In(O/O)? 0 
WI{L2, L1, [ml) 0 d/2 0 

mo= _+lmol 
Ira01 

~2 + m2 

kBTz 

k~Tz 

1 

1 

1 

0 

0 
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systems and by comparison one can decide where to use m and where tml. 
The results for some of the functions in Section 4 are presented in Table IIL 
The underscored quantities in Table III are the ones  actually used in the 
analysis. Note that the rule of thumb "uses Ira1 for all odd moments" may 
lead to wrong critical amplitudes for fluctuations like the susceptibility 
above To. The factor 1 - 2/rE between the right and wrong way of measur- 
ing the susceptibility above T C is indeed confirmed by the simulations (see 
Figs. 7 and 10). Of course, if one is interested only in critical exponents and 
not in the amplitudes, such factors do not matter. 
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